Kurumsal Açık Arşiv

ANFIS and statistical based approach to prediction the peak pressure load of concrete pipes including glass fiber


Basit öğe kaydını göster

dc.contributor.author Emiroğlu, Mehmet
dc.contributor.author Beycioğlu, Ahmet
dc.contributor.author Yıldız, Servet
dc.date.accessioned 2015-07-02T07:40:02Z
dc.date.available 2015-07-02T07:40:02Z
dc.date.issued 2012-01-01
dc.identifier.citation Emiroğlu, M., Beycioğlu, A. ve Yıldız, S. (2012). ANFIS and statistical based approach to prediction the peak pressure load of concrete pipes including glass fiber. Expert Systems with Applications, 39(1), 2877-2883. tr_TR
dc.identifier.uri http://hdl.handle.net/11508/8300
dc.description.abstract In this paper, Adaptive Neural Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) models are discussed to determine peak pressure load measurements of the 0, 0.2, 0.4 and 0.6% glass fibers (by weight) reinforced concrete pipes having 200, 300, 400, 500 and 600 mm diameters. For comparing the ANFIS, MLR and experimental results, determination coefficient (R2), root mean square error (RMSE) and standard error of estimates (SEE) statistics were used as evaluation criteria. It is concluded that ANFIS and MLR are practical methods for predicting the peak pressure load (PPL) values of the concrete pipes containing glass fibers and PPL values can be predicted using ANFIS and MLR without attempting any experiments in a quite short period of time with tiny error rates. Furthermore ANFIS model has the predicting potential better than MLR. tr_TR
dc.language.iso Türkçe tr_TR
dc.subject Fırat Üniversitesi Kütüphanesi::GENEL KONULAR tr_TR
dc.subject.ddc Concrete pipe tr_TR
dc.subject.ddc Peak pressure load tr_TR
dc.subject.ddc Glass fiber tr_TR
dc.subject.ddc Multiple Linear Regression tr_TR
dc.subject.ddc ANFIS tr_TR
dc.title ANFIS and statistical based approach to prediction the peak pressure load of concrete pipes including glass fiber tr_TR
dc.type Makale - Bilimsel Dergi Makalesi - Çok Yazarlı tr_TR
dc.relation.journal Expert Systems with Applications tr_TR
dc.identifier.volume 39 tr_TR
dc.identifier.issue 1 tr_TR
dc.identifier.pages 2877;2883
dc.published.type Uluslararası tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

Fırat Üniversitesi Rektörlüğü
23119
Elazığ-Merkez
TÜRKİYE