Kurumsal Açık Arşiv

An implementation of vision based deep reinforcement learning for humanoid robot locomotion


Basit öğe kaydını göster

dc.contributor.author Özalp, Recep
dc.contributor.author Kaymak, Çağrı
dc.contributor.author Yıldırım, Özal
dc.contributor.author Uçar, Ayşegül
dc.contributor.author Demir, Yakup
dc.contributor.author Güzeliş, Cüneyt
dc.date.accessioned 2019-08-09T10:53:39Z
dc.date.available 2019-08-09T10:53:39Z
dc.date.issued 2019-07-03
dc.identifier.citation Özalp, R., Kaymak, Ç., Yıldırım, Ö., Uçar, A., Demir, Y. ve diğerleri. (2019). An implementation of vision based deep reinforcement learning for humanoid robot locomotion. INISTA 2019. (ss.1-5). Bulgaristan: IEE. tr_TR
dc.identifier.uri http://hdl.handle.net/11508/16635
dc.description.abstract Deep reinforcement learning (DRL) exhibits a promising approach for controlling humanoid robot locomotion. However, only values relating sensors such as IMU, gyroscope, and GPS are not sufficient robots to learn their locomotion skills. In this article, we aim to show the success of vision based DRL. We propose a new vision based deep reinforcement learning algorithm for the locomotion of the Robotis-op2 humanoid robot for the first time. In experimental setup, we construct the locomotion of humanoid robot in a specific environment in the Webots software. We use Double Dueling Q Networks (D3QN) and Deep Q Networks (DQN) that are a kind of reinforcement learning algorithm. We present the performance of vision based DRL algorithm on a locomotion experiment. The experimental results show that D3QN is better than DQN in that stable locomotion and fast training and the vision based DRL algorithms will be successfully able to use at the other complex environments and applications. tr_TR
dc.description.sponsorship TÜBİTAK ve NVIDIA tr_TR
dc.language.iso Türkçe tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fırat Üniversitesi Kütüphanesi::DOĞA BİLİMLERİ VE MATEMATİK tr_TR
dc.subject.ddc İnsansı robotlar tr_TR
dc.subject.ddc Derin öğrenme tr_TR
dc.subject.ddc Deep reinforcement learning tr_TR
dc.subject.ddc Humanoid robots tr_TR
dc.title An implementation of vision based deep reinforcement learning for humanoid robot locomotion tr_TR
dc.type Bildiri - Yayımlanmış tr_TR
dc.relation.publishinghaddress Bulgaristan tr_TR
dc.relation.publishinghouse IEE tr_TR
dc.identifier.pages 1;5
dc.identifier.bookname INISTA 2019 tr_TR
dc.published.type Uluslararası tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

Fırat Üniversitesi Rektörlüğü
23119
Elazığ-Merkez
TÜRKİYE